立体百科大全(立体的图片大全)

2023-06-18 23:01:03 生活饮食 0阅读 回答者:admin

本篇文章给大家谈谈立体百科大全,以及立体的图片大全对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

  • 1、一共有几个立体图形?
  • 2、什么是立体
  • 3、立体图形有哪些
  • 4、常见的立体图形有哪些
  • 5、立体图形有哪些5种

一共有几个立体图形?

常见的立体图形有柱体(圆柱、棱柱)、锥体 (圆锥、棱锥)、台体(圆台、棱台)和球体 (球)四类。比如正方体、长方体、圆柱、圆锥、直三棱柱等。

一、正方体

用六个完全相同的正方形围成的立体图形叫正方体。侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”“正六面体”。正方体是特殊的长方体。正方体的动态定义:由一个正方形向垂直于正方形所在面的方向平移该正方形的边长而得到的立体图形。

二、长方体

长方体(cuboid)是底面是长方形的直棱柱。正方体是特殊的长方体,正方体是六个面都是正方形的长方体。长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点。

长方体六个面面积的和,叫作长方体的表面积。长方体的体积是对长方体的一种度量,长方体的体积等于长、宽、高之积。

三、圆柱

圆柱(circular cylinder)是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。

四、圆锥

圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。

立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。

垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)

五、直三棱柱

直三棱柱是各个侧面的高相等,底面是三角形,上表面和下表面平行且全等,所有的侧棱相等且相互平行且垂直于两底面的棱柱。上下表面三角形可以是任意三角形。正三棱柱是直三棱柱的特殊情况,即上下面是正三角形。

参考资料来源:百度百科-立体图形

参考资料来源:百度百科-正方体

参考资料来源:百度百科-长方体

参考资料来源:百度百科-圆柱

参考资料来源:百度百科-圆锥

参考资料来源:百度百科-直三棱柱

什么是立体

立体图形是各部分不在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形。点动成线,线动成面,面动成体。即由面围成体,看一个长方体,正方体等的规则立体图形最多看到立体图形实物的三个面。

所有点不在同一平面上的图形叫立体图形。对现实物体认识上的一种抽象,即把现实的物体在只考虑其形状和大小,而忽略其它因素的基础上在平面上的表示。

扩展资料:

正方体有8个顶点,6个面。每个面面积相等(或每个面都由正方形组成)。有12条棱,每条棱长的长度都相等。(正方体是特殊的长方体)

长方体有8个顶点,6个面。每个面都由长方形或相对的一组正方形组成。有12条棱,相对的4条棱的棱长相等。

认识立体图形,建立空间观念。利用它们可以帮助学生直观地认识各种物体的形状和特点,自己动手摆出不同形状的立体组合,还可以通过拆分体会各种几何体之间的变换关系,从而加深对立体图形特征的认识和理解。

参考资料来源:百度百科——立体图形

立体图形有哪些

立体图形列举参考:

1、长方体

由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫长方体。长方体有8个顶点,6个面,相对的两个面面积相等。有12条边,相对的4条棱的棱长相等。

2、正方体

用六个完全相同的正方形围成的立体图形叫正方体。正方体有8个顶点,6个面,而且每个面的面积相等,每个面都由正方形组成。有12条棱,每条棱长的长度都相等。(注意:正方体是特殊的长方体)。

3、圆柱

在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫作旋转面的母线。如果母线是和轴平行的一条直线,那么所生成的旋转面叫做圆柱面。

如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱或圆柱体,简称为圆柱。圆柱的上下两个面为大小相同的圆形,还有一个曲面叫侧面。侧面沿高展开后为长方形或正方形,沿直线是平行四边形,随意展开是不规则图形。有无数条高,这些高的长度都相等。

4、球体

空间中到定点的距离等于定长的所有点组成的图形叫做球,球体是一个连续曲面的立体图形,由球面围成的几何体称为球体或圆球,简称球。

旋转所成的曲面叫做球面;半圆的圆心叫做球心;连结球心和球面上任意一点的线段的长叫做球的半径的大小;连结球面上两点并且经过球心的线段的长叫做球的直径的大小;球体的正中心距圆球的表面处处相等。

5、圆锥

以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥,该直角边叫圆锥的轴。有1个顶点,1个曲面,一个底面。圆锥的侧面沿母线展开后为扇形,只有1条高。四面体有4个顶点,四面,六条棱高。

6、圆台

用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。圆台同圆柱和圆锥一样也有轴、底面、侧面和母线,并且用圆台台轴的字母表示圆台。

7、棱柱

有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。

两个侧面的公共边叫做棱柱的侧棱。 侧面与底的公共顶点叫做棱柱的顶点,不在同一个面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高。

参考资料来源:百度百科-立体图形

常见的立体图形有哪些

常见的立体图形有柱体(圆柱、棱柱)、锥体 (圆锥、棱锥)、台体(圆台、棱台)和球体 (球)四类。比如正方体、长方体、圆柱、圆锥、直三棱柱等。

一、正方体

用六个完全相同的正方形围成的立体图形叫正方体。侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”“正六面体”。正方体是特殊的长方体。正方体的动态定义:由一个正方形向垂直于正方形所在面的方向平移该正方形的边长而得到的立体图形。

二、长方体

长方体(cuboid)是底面是长方形的直棱柱。正方体是特殊的长方体,正方体是六个面都是正方形的长方体。长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点。

长方体六个面面积的和,叫作长方体的表面积。长方体的体积是对长方体的一种度量,长方体的体积等于长、宽、高之积。

三、圆柱

圆柱(circular cylinder)是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。

四、圆锥

圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。

立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。

垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)

五、直三棱柱

直三棱柱是各个侧面的高相等,底面是三角形,上表面和下表面平行且全等,所有的侧棱相等且相互平行且垂直于两底面的棱柱。上下表面三角形可以是任意三角形。正三棱柱是直三棱柱的特殊情况,即上下面是正三角形。

参考资料来源:百度百科-立体图形

参考资料来源:百度百科-正方体

参考资料来源:百度百科-长方体

参考资料来源:百度百科-圆柱

参考资料来源:百度百科-圆锥

参考资料来源:百度百科-直三棱柱

立体图形有哪些5种

常见立体图形如下:

1、正方体

有8个顶点,6个面。每个面面积相等(或每个面都由正方形组成)。有12条棱,每条棱长的长度都相等。(正方体是特殊的长方体)

2、长方体

有8个顶点,6个面。每个面都由长方形或相对的一组正方形组成。有12条棱,相对的4条棱的棱长相等。

3、圆柱

上下两个面为大小相同的圆形。有一个曲面叫侧面。侧面沿高展开后为长方形或正方形··沿直线是平行四边形··随意展开是不规则图形。有无数条高,这些高的长度都相等。

4、圆锥

有1个顶点,1个曲面,一个底面。侧面沿母线展开后为扇形。只有1条高。

5、正方体

四面体有1个顶点,四面六条棱高。

6、直三棱柱

三条侧棱切平行,上表面和下表面是平行且全等的三角形。

扩展资料:

立体图形的常用公式:

1、长方体的表面积=2×(长×宽+长×高+宽×高) 用符号表示是:S=2(ab+bc+ca)。

2、长方体的体积 =长×宽×高 用符号表示是:V=abh 或底面积×高 用符号表示是:V=Sh。

3、正方体的表面积=棱长×棱长×6 用符号表示是:S=a²×6。

4、正方体的体积=棱长×棱长×棱长 用符号表示是:V=a³。

5、圆柱的侧面积=底面周长×高 用符号表示是:S侧=πd×h。

6、圆柱的表面积=2×底面积+侧面积 用符号表示是:S=πr²×2+dπh。

7、圆柱的体积=底面积×高 用符号表示是:V=πr²×h。

8、圆锥的体积=底面积×高÷3 用符号表示是:V=πr²×h÷3。

9、圆锥侧面积=1/2*母线长*底面周长。

10、圆台体积=[S+S′+√(SS′)]h÷3。

11球体体积=(1/3*S*h)*(4*pi*R²)/S=4/3*pi*R².

参考资料来源:百度百科——立体图形

立体百科大全的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于立体的图片大全、立体百科大全的信息别忘了在本站进行查找喔。

免责声明:本文来源网友投稿及网络整合仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。投诉邮箱:1765130767@qq.com。

本文地址:https://www.lnsss.com/shenghuo/yinshi/707973.html