egoroff定理的证明(egorov定理是什么)

2023-06-03 21:27:03 生活饮食 0阅读 回答者:admin

大家好,小东方来为大家解答以上的问题。egoroff定理的证明,egorov定理是什么这个很多人还不知道,现在让我们一起来看看吧!

1、在测度论中,叶戈罗夫定理确立了一个可测函数的逐点收敛序列一致连续的条件。

2、这个定理以俄国物理学家和几何学家德米特里·叶戈罗夫命名,他在1911年出版了该定理。

3、 叶戈罗夫定理与紧支撑连续函数在一起,可以用来证明可积函数的卢津定理。

4、设( M, d)为一个可分度量空间(例如实数,度量为通常的距离 d( a, b)= | a− b|)。

5、给定某个测度空间( X,Σ,μ)上的 M-值可测函数的序列( f),以及一个有限μ-测度的可测子集 A,使得( f)在 A上μ-几乎处处收敛于极限函数 f,那么以下结果成立:对于每一个ε>0,都存在 A的一个可测子集 B,使得μ( B)<ε,且( f)在相对补集 A B上一致收敛于 f。

6、在这里,μ( B)表示 B的μ-测度。

7、该定理说明,在 A上几乎处处逐点收敛,意味着除了在任意小测度的某个子集 B上外一致收敛。

8、这种收敛又称为几乎一致收敛。

本文到此分享完毕,希望对大家有所帮助。

免责声明:本文来源网友投稿及网络整合仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。投诉邮箱:1765130767@qq.com。

本文地址:https://www.lnsss.com/shenghuo/yinshi/656410.html