大家好,小东方来为大家解答以上的问题。三角形中位线定理的证明方法,三角形中位线这个很多人还不知道,现在让我们一起来看看吧!
1、如图,已知△ABC中,D,E分别是AB,AC两边中点。
2、 求证DE平行且等于BC/2 法一: 过C作AB的平行线交DE的延长线于F点。
3、 ∵CF‖AD ∴∠A=∠ACF ∵AE=CE、∠AED=∠CEF ∴△ADE≌△CFE ∴DE=EF=DF/2、AD=CF ∵AD=BD ∴BD=CF ∴BCFD是平行四边形 ∴DF‖BC且DF=BC ∴DE=BC/2 ∴三角形的中位线定理成立. 法二:利用相似证 ∵D,E分别是AB,AC两边中点 ∴AD=AB/2AE=AC/2 ∴AD/AE=AB/AC 又∵∠A=∠A ∴△ADE∽△ABC ∴DE/BC=AD/AB=1/2 ∴∠ADE=∠ABC ∴DF‖BC且DE=BC/2 法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为:根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3削掉正好中位线长为其对应边长的一半。
本文到此分享完毕,希望对大家有所帮助。