小学六年级数学难题大全及答案(数学难题大全及答案)

2023-05-18 15:45:10 生活饮食 0阅读 回答者:admin

大家好,小东方来为大家解答以上的问题。小学六年级数学难题大全及答案,数学难题大全及答案这个很多人还不知道,现在让我们一起来看看吧!

1、证明1+1=2。

2、不能说是最难的。

3、但是到现在没做完。

4、哥德巴赫猜想。

5、论哥德巴赫猜想的简单证明 沙寅岳 一、证明方法 设N为任一大于6的偶数,Gn为不大于N/2的正整数,则有:N=(N-Gn)+Gn (1) 如果N-Gn和Gn同时不能被不大于√N的所有质数整除,则N-Gn和Gn同时为奇质数.设Gp(N)表示N-Gp和Gp同时为奇质数的奇质数Gp的个数,那么,只要证明:当N>M时,有Gp(N)>1,则哥德巴赫猜想当N>M时成立.二、双数筛法 设Gn为1到N/2的自然数,Pi为不大于√N的奇质数,则Gn所对应的自然数的总个数为N/2.如N-Gn和Gn这两个数中任一个数被奇质数Pi整除,则筛去该Gn所对应的自然数,由此,被奇质数Pi筛去的Gn所对应的自然数的个数不大于INT(N/Pi),则剩下的Gn所对应的自然数的个数不小于N/2-INT(N/Pi),与Gn所对应的自然数的总个数之比为R(Pi):R(Pi)≥(N/2-INT(N/Pi))/(N/2)≥(1-2/Pi)×INT((N/2)/Pi)/((N/2)/Pi) (2) 三、估计公式 由于所有质数都是互质的,可应用集合论中独立事件的交积公式,由公式(2)可得任一偶数表为两个奇质数之和的表法的数量的估计公式:Gp(N)≥(N/4-1)×∏R(Pi)-1≥(N/4-1)×∏(1-2/Pi)×∏(1-2Pi/N)-1 (3) 式中∏R(Pi)表示所有不大于√N的奇质数所对应的比值计算式的连乘.四、简单证明 当偶数N≥10000时,由公式(3)可得:Gp(N)≥(N/2-2-∑Pi)×(1-1/2)×∏(1-2/Pi)-1 ≥(N-2×√N)/8×(1/√N)-1=(√N-2)/8-1≥11>1 (4) 公式(4)表明:每一个大于10000的偶数表为两个奇质数之和至少有11种表法.经验证明:每一个大于4且不大于10000的偶数都可表为两个奇质数之和.最后结论:每一个大于4的偶数都可表为两个奇质数之和.(一九八六年十二月二十四日) 哥德巴赫猜想是世界近代三大数学难题之一.1742年,由德国中学教师哥德巴赫在教学中首先发现的.1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于 6的偶数都可以表示成两个素数之和.b.任何一个大于9的奇数都可以表示成三个素数之和.这就是哥德巴赫猜想.欧拉在回信中说,他相信这个猜想是正确的,但他不能证明.从此,这道数学难题引起了几乎所有数学家的注意.哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”.中国数学家陈景润于1966年证明:任何充份大的偶数都是一个质数与一个自然数之和,而后者可表示为两个质数的乘积.”通常这个结果表示为 1+2.这是目前这个问题的最佳结果.要想看懂陈景润的严格证明,恐怕多数没有数论基础的朋友根本做不到.给一个最简单的简述:1941年,P.库恩(Kuhn)提出了加权筛法,这种方法可以加强其他筛法的效果.当今有关筛法的许多重要结果都与这一思想有关.参考资料:陈景润1+2的证明.。

本文到此分享完毕,希望对大家有所帮助。

免责声明:本文来源网友投稿及网络整合仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。投诉邮箱:1765130767@qq.com。

本文地址:https://www.lnsss.com/shenghuo/yinshi/495403.html