今天我是价值网陈慧来为大家解答以上问题,泰勒公式展开式大全高中,2023年09月06日高中常用十个泰勒展开公式很多人还不知道,现在让我们一起来看看吧!
1、e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……
2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)
3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞
4、cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞
5、arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)
6、arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)
7、arctan x = x - x^3/3 + x^5/5 -……(x≤1)
8、sinh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+…… (-∞
9、cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞
10、arcsinh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - …… (|x|<1)
11、arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1)
数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
本文到此结束,希望对大家有所帮助。